Rings and Algebras the Jacobson Radical of a Semiring

نویسندگان

  • SAMUEL BOURNE
  • R. H. BRüCK
چکیده

The concept of the Jacobson radical of a ring is generalized to semirings. A semiring is a system consisting of a set S together with two binary operations, called addition and multiplication, which forms a semigroup relative to addition, a semigroup relative to multiplication, and the right and left distributive laws hold. The additive semigroup of S is assumed to be commutative. The right ideal 7 of a semiring S is said to be right semiregular if for every pair of elements ii, i2 in 7 there exist elements ji and j2 in 7 such that ii + ji + i_ji + i2j2 = Ì2 + J2 + Ì1J2 + idi The Jacobson radical R of a semiring S is the sum of all the right semiregular ideals of S. I t is also the sum of all the left semiregular ideals of S. It is shown that the Jacobson radical of a semiring S has the two following important properties: (i) If R is the Jacobson radical of the semiring S, then the difference semiring S — R is semisimple, (ii) The Jacobson radical of a semiring S is a radical semiring. Thus the structure of an arbitrary semiring is reduced to the study of the structure of semisimple semirings and radical semirings. The paper concludes with a consideration of the Jacobson radical of a matrix semiring Sn . In the case S is a ring, the theory reduces to the Jacobson theory for arbitrary rings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Nilpotency of the Jacobson Radical of Semigroup Rings

Munn [11] proved that the Jacobson radical of a commutative semigroup ring is nil provided that the radical of the coefficient ring is nil. This was generalized, for semigroup algebras satisfying polynomial identities, by Okniński [14] (cf. [15, Chapter 21]), and for semigroup rings of commutative semigroups with Noetherian rings of coefficients, by Jespers [4]. It would be interesting to obtai...

متن کامل

On Jacobson Radical of a Γ−semiring

We introduce the notions of Jacobson radical of a Γ−semiring and semisimple Γ−semiring and characterize them via operator semirings. AMS Mathematics Subject Classification (2000): 16Y60, 16Y99, 20N10

متن کامل

Distributive Lattices of Jacobson Rings

We characterize the distributive lattices of Jacobson rings and prove that if a semiring is a distributive lattice of Jacobson rings, then, up to isomorphism, it is equal to the subdirect product of a distributive lattice and a Jacobson ring. Also, we give a general method to construct distributive lattices of Jacobson rings.

متن کامل

ON COMMUTATIVE GELFAND RINGS

A ring is called a Gelfand ring (pm ring ) if each prime ideal is contained in a unique maximal ideal. For a Gelfand ring R with Jacobson radical zero, we show that the following are equivalent: (1) R is Artinian; (2) R is Noetherian; (3) R has a finite Goldie dimension; (4) Every maximal ideal is generated by an idempotent; (5) Max (R) is finite. We also give the following resu1ts:an ideal...

متن کامل

State spaces of $K_0$ groups of some rings

‎Let $R$ be a ring‎ ‎with the Jacobson radical $J(R)$ and let $picolon Rto R/J(R)$ be‎ the canonical map‎. ‎Then $pi$ induces an order preserving group homomorphism‎ ‎$K_0picolon K_0(R)to K_0(R/J(R))$ and an‎ ‎affine continuous map $S(K_0pi)$ between the state space $St(R/J(R))$ and the‎ ‎state space $St(R).$‎ ‎In this paper‎, ‎we consider the natural affine map $S(K_0pi).$ We give a condition ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010